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ABSTRACT 

A first-order perturbation theory exists for the flyby problem with the 
Born approximation  as  the reference orbit (Anderson and Giampieri 
1999). This  theory is applicable when the flyby can be approximated 
by a straight line, a hyperbola with zero bending angle or infinite ec- 
centricity, but  it fails  when the  central mass GM is large, or when the 
flyby  is at a small distance b or a small velocity v.  The applicability 
of the theory depends on the  parameter GM/bv2 being small. Here 
we present an analytical theory for the motion of a spacecraft with 
the hyperbola  as the reference orbit.  The  perturbations consist of the 
next term after the monopole  in the central body’s exterior gravita- 
tional  potential  function, the quadrupole  terms, which we represent 
by the usual harmonic coefficients C20 and C22. These harmonic coef- 
ficients are  the only  coefficients of degree  two that need be considered 
when the gravity harmonic coefficients are referred to  the principal 
axis system of the body. The  perturbations of the hyperbolic ele- 
ments  are expressed as functions of the  unperturbed values of the 
elements. There  are no approximations with respect to  the eccentric- 
ity or inclination, hence the equations for the variation of the elements 
do not involve  infinite  series. We compare results of the new theory 
with results of numerical integration and with results predicted by the 
Anderson-Giampieri theory (AGT). We find that we can improve the 
orbital accuracy of AGT by a simple modification, and we correct a 
sign error  in the C22 term  in  the AGT potential  function. 
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ABSTRACT 

A first-order perturbation theory exists for the flyby problem with the 
Born approximation as the reference orbit (Anderson and Giampieri 
1999, AG thereafter).  This theory is applicable when the deflection 
parameter p / b v 2  (where p is the product of the gravitational  constant 
by the body’s mass, b the impact parameter,  and v the velocity of the 
flyby) is small. Here we present an analytical theory for the motion 
of a spacecraft with the hyperbola as the reference orbit.  The per- 
turbations consist of the next term after the monopole in the central 
body’s gravitational exterior potential  function, represented by the 
quadrupole harmonic coefficients C2, and C22. The  perturbations of 
the hyperbolic elements are expressed in closed form, without involv- 
ing infinite series, as functions of the  unperturbed  orbital elements. 
We compare results of the new theory with the AG’s theory. We find 
that  the AG’s theory can be improved by a simple modification, and 
by correcting a sign error  in  the C22 term in the potential function. 
The effects  of the body’s rotation on the  perturbations  are discussed, 
and new results  pertaining to  the AG’s approach are given. 
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1. INTRODUCTION 

This  paper deals with the  perturbations of the  trajectory of a spacecraft during 

a close  flyby of a non spherical central mass distribution, in particular  a  satellite or a 

planet. 

The motivation and justification for the paper  are presented in section 2. The 

equations of Lagrange for the hyperbolic motion are derived  in section 3. The first order 

solution with respect to  the body’s gravity harmonic coefficients of degree two, C20 and 

C22, is presented in section 4. Section 5 compares the new theory with the Anderson 

Giampieri or AG theory (1999) as well as with results of numerical integrations.  Both 

the new theory and the AG’s theory neglect the effect of the body’s rotation on the 

perturbations  due  to  its  quadrupole moments. Section 6 discusses this  assumption  and 

presents a modification of the AG’s theory that yields the effects of the  rotation. Section 

7 contains our conclusion. 

Appendix A summarizes pertinent equations for the  unperturbed hyperbolic mo- 

tion. 

2. MOTIVATION AND JUSTIFICATION 

The work presented in this  paper was motivated by the need to  study spacecraft 

flybys of planetary bodies from the point of  view of using such flybys to measure the 

body’s gravitational field, and to improve our knowledge of the ephemerides of planetary 

bodies and spacecraft. 

Over the past few years, analyses of spacecraft Doppler data have allowed scientists 

to determine the gravity field of the Jupiter’s Galilean satellites (Anderson et  al. 1996a, 

1996b, 1997a, 1997b) and infer important  (and  surprising) new information on their 

interiors.  Gravity science of Saturn and its satellites is an  important goal of the Cassini 

mission. So, we started  this work with an interest in the flybys that will occur with the 

Cassini Orbiter spacecraft during its  tour of the  Saturnian system. 

Although the  JPL Orbit Determination Program (ODP) can be used  for simula- 

tions  and covariance analyses, an analytical theory is  useful in a complementary way 
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to provide more  insight for focused studies, and  to compare efficiently a  large  num- 

ber of tour  and observation possibilities in support of Cassini mission and experiment 

planning. 

Within  the last  decade, an elegant general  satellite perturbation theory  has  ap- 

peared that can easily be extended to hyperbolic  orbits  (Gooding 1992). However, 

because we are dealing here  with a limited  number of gravitational  harmonics for icy 

satellites, or for the giant  outer  planets, the implementation of Gooding’s theory,  with 

all its generalities, is not necessarily the most efficient way to proceed. Instead, we 

have chosen to implement a simpler first-order  perturbation  theory, useful for mission 

simulations of Doppler tracking  experiments in the outer  solar  system. 

More recently, a very simple analytical  theory  has been developed for flybys of 

small  bodies  (Anderson and Giampieri 1999 or AG), which also uses the  method of 

variation of parameters,  but which adopts  unperturbed  orbital  elements based on the 

Born approximation for a massless central body. In the AG’s theory, all gravity  terms 

are  treated as perturbations, including the monopole coefficient p ,  the  product of the 

gravitational  constant  and  the  total mass of the central body. The  unperturbed motion 

is rectilinear and uniform. 

The AG’s theory is based on the assumption that  the  parameter E = p / b v 2  << 1, 

where b is the impact  parameter,  and v is the speed of the spacecraft  with  respect to 

the body at closest approach.  This  assumption is verified in the example of section 5, 
in which we have E M 7.1 x but is only marginally verified in the example of the 

Pioneer 11 flyby of Saturn, for  which E M 0.46. By contrast,  the new theory, which does 

not  assume such a  small  parameter,  has a general  domain of applicability. 

Practical examples show that  the AG’s theory does not compute  mass perturba- 

tions  with sufficient accuracy for targeted flybys of satellites of the giant  planets of the 

solar  system. However, we found that we could improve the calculation of the mass 

perturbations in the AG’s theory. This is presented  in section 5.1. 

Furthermore,  the  comparisons between the new and AG theories allowed us to 

identify and correct a sign error  in section 6.2 of the AG’s paper,  “Quadrupole  Sectorial 

Harmonics.”  This error and subsequent  errors that result from it  are corrected  in  section 

5.2 of this  paper. 
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The corrected and improved  AG’s theory is now such that, for small E ,  the flyby 

trajectories that  it predicts agree remarkably well with those computed from both nu- 

merical integrations  and the hyperbolic theory of this  paper. 

For purposes of performing mission studies, we have implemented both theories, 

as well as  a  strictly numerical theory based  on numerical integration of the equations 

of motion. With these three tools, we are able to provide reliable flyby simulations of 

gravity-science experiments for practically any mission scenario. Although the  actual 

experiment must be performed with the ODP, or its equivalent, mission studies can be 

done with greater efficiency and flexibility by implementing the results of this  paper. 

3. VARIATIONS OF PARAMETERS 

In this section, we derive the Lagrange equations for the hyperbolic motion, fol- 

lowing and  adapting  the derivation of Battin (1987) of the Lagrange equation for the 

elliptical motion. 

We use the classical hyperbolic orbital elements defined by Battin (1987) page 165. 
Let us consider the reference frame Ody‘z’ such that: 

1. 0 coincides with the focus of the hyperbola; 

2. Oz‘ is normal to  the  orbit; 

3. Ox‘ is in the direction of the vertix (periapsis). 

The semi-major axis ( a  < 0 ) and eccentricity (e > 1) define the  shape of the orbit 

in this reference frame  in  terms of the cylindrical coordinates r (radius)  and f (true 

anomaly) by 

a(I  - e 2 )  
1 + ecos f * 

r =  

The longitude of the node a, inclination I ,  and argument of pericenter w are 

the Euler angles orienting the reference frame Ody’z’ with respect to  the body-fixed 

reference frame Ozyz. 

The mean motion n and  mean anomaly M are defined in a similar way as  for the 

elliptic motion by 
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and 

M = n(t - t c /a )  = nt + A, 

where tela is the time of passage at periapsis. 

Useful properties of the hyperbolic  orbits are given in Appendix A.2.1. 

3.1. Fundamental Equations 

The  method of the variation of parameters  writes  the  equations of motion  in the 

form 

L - = ( - p )  dZ d R  7 
T 

dt 

where the Lagrange matrix L is defined by 

Lij = [ai,aj];  (5) 

where R is the  disturbing function,  and the [ai, aj] are Lagrange brackets, defined  by: 

3.2. Lagrange Brackets 

Using fundamental equations given in Appendix A, we compute the Lagrange  brack- 

ets.  The ones  which are different from zero are 
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1 
2 

[a,  A] =-nu, 

nu2 e cos I 
J2=i  
nu2 e 

JT’ 

[e, O] = - 

[ e , u ]  = - 

[I, 01 = n a 2 & C i s i n  I, 

The Lagrange  brackets given  by Eq. (7) are similar to those for the elliptic  motions 

but have 4- replaced by and different signs,  depending on the Lagrange 

bracket. 

3.3. Equations of Motion 

Using Eqs. (7) and inverting  Eqs. (4), we obtained  the  Lagrange  equations  for  the 

hyperbolic  motion in the form 
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da 2 d R  
dt  nu dA ? 

- "_" 

de d z  d R  (e2 - 1) d R  
dt na2e dw -+ na2e dA ? 

- - - 

d A  2 d R  (e2 - 1) d R  
dt nu da na2e de 
- "- - - 

The  terms in the  right-hand side members of the Lagrange equations given  by Eq. 
(8) are similar to those for the elliptic  motions  but have d m  replaced by d n  
and different signs,  depending on the  term. 

To deal  with the case of zero inclination? we introduce the classical non-singular 

variables 

I 
2 

P =tan - sinR, 

I 
2 

Q = - tan - cosR. 

whose variations are governed  by the equations 
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tan - I 2 cos 0")' d l  

dQ - d l  I dS1 
- - - 1 (1 + tan2 i) cosa-  +tan  -sinR- 
d t  2 d t  2 d t  

I 
2 

tan - sin S1- 

We do not consider in  this  paper the case of eccentricities equal to 1 as  this case  is 

not relevant in practice for the flybys we are considering. 

4. VARIATION OF THE ELEMENTS FOR THE  PERTURBATIONS DUE 

TO C 2 0  AND C 2 2  

In this section, we compute the variations of the hyperbolic elements due to C 2 0  

and C22. This is  useful to evaluate the  perturbations of the  quadrupole  gravitational 

field of the body in the case  where the gravity harmonic coefficients are referred to  the 

principal axis system of the body. This assumption is  most  useful  for a body (e.g., a 

satellite) which orbits in a synchronous fashion on a low inclination-, low eccentricity- 

orbit  around a primary (e.g., a planet).  In  that case, we can assume that  the axis of 

lower inertia is  along the direction from the body's center to  the primary's center. 
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4.1.  Disturbing Function 

4.1.1. General Formulation 

The disturbing function can be written as: 

at radius T ,  latitude cp, and longitude X;  R is the reference radius  and the Pem are 

Legendre functions. 

Eq. (11) can be expressed in  terms of orbital elements using the relation 

where the  Kaula functions of the inclination (Kaula, 1966) are defined  by: 

e-m-j 

(cos i) (sin i) l-m+2p”2j 

and 8 is the angle orienting the z-axis with respect to  an inertial axis in the equatorial 

plane of the body. 

4.1.2.  Degree 2 Disturbing Function 

We select the satellite body-fixed  reference frame to coincide with the principal 

axes of inertia of the body.  In that reference frame, all the gravity coefficients of degree 

two, except C ~ O  and C 2 2 ,  vanish. The disturbing function of degree  two  is composed of 

two terms 
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and 

where the angles are defined by 

Aemp = (e - 2p)w + m(S2 - e), 

and with the functions of the inclination I 

3 2  1 F201(1)  = 4 sin I - -, 
2 

3 
8 

F 2 0 0 ( 1 )  = F 2 0 2 ( 1 )  = - - sin2 I ,  

3 
F 2 2 0 ( I )  = 4 (1 + c 0 s q 2 ,  

F 2 2 2 ( 1 )  = 4 (1 - C O S I )  , 3 2 

3 
2 

~ 2 2 1 ( 1 )  = - sin2 I ,  

4.2. Variations of the Elements 

We computed the first  order  variations of the hyperbolic  elements of the spacecraft's 

trajectory by replacing  in the right-hand side member of the equations of motion the 
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hyperbolic elements by their  unperturbed values and  integrating the equations  obtained 

in this way. 

The only assumption that we made was that 8 E 80 is constant during a flyby. In 

other words we neglected the  rotation of the body during the  duration of the flyby. This 

assumption, which  was made for simplicity, is justified in the cases  where the  duration 

of the flyby  is smaller than  the  rotation  rate of the body. We discuss this  assumption 

in more details in section 6. 

Furthermore, the direct effects of the centrifugal and Coriolis  forces associated 
with the  rotation of the body are not the subject of this  paper. For covariance analyses, 

these forces are not important since they have  no  effect  on the observable. For trajectory 

calculations, the  rotation  perturbations derived by Anderson and Giampieri (1999) can 

be used to introduce the  rotation  perturbations  into  the body-fixed principal axes. 

The derivation started from indefinite integrals over time, transformed to  true 

anomaly. The analytical integration of the last equation turned  out to be very  compli- 

cated,  due  in  particular to  the presence of terms in H cos(jf) and H sin(jf) where H 
is the hyperbolic eccentric anomaly (see Appendix A.2.1). 

Below are our results, giving the variations of the elements with respect to  the 

body-fixed  reference frame at closest approach. We use the subscript “i” to denote 

initial values, and  the subscript “0” to denote unperturbed values. We designate by 

Ajmp the value of Atmp computed with wo, 520,  and 80. 

There is no approximation with respect to  the eccentricity or the inclination. The 

equations given  below  for the variations of the hyperbolic elements do not involve any 

infinite series. 

The semi-major axis  is  given  by: 

12 



where a1 is a constant of integration and with 

1 
G a l ( e ?  f )  = - 2(e2 - 1)3 (12e + 3e3) cos f + 6e2 cos 2f + e3 cos 3f 1 

The eccentricity is  given  by 

where el  is a constant of integration and with 

The  argument of periapsis is  given  by: 
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L 

where w1 is a  constant of integration  and with 

Gwl(e?f)  =4e(e2 - 1 1 2  
12ef + (12 + 9e2) sin f + 6e sin 2f + e2 sin 3f 1 

1 
6e(e2 - 1)2 Gwz(e , z , f )  = - 

The inclination and longitude of the node can be computed from the equations 
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(25) 
where PI and Q1 are  constants of integration  and with 

3 
2 

P O ( I )  =- tan (i) cos I ,  

3 
p2(1) =-tan 2 (5) (-1 + c o s I ) ,  

and 
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r 1 

The  variable A is  given by: 
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1 
4e(e2 - 1 ) 5 P  

-( 12 - 3e2 + 6e4) sin f - (6e + 6e3) sin 2f - (e2 + 2e4) sin 3f + 1 
4(e2 - 1 ) 3  

(12e + 3e3) cos f + 6e2 cos 2 f  + e3 cos 3 f + 1 
r 1 

2(e2 - 1 ) 3  
-(6e + 3e2 + 2e3)M + (2 + 3e2)H 

1 
24e(e2 - 1)5/2 

(3e2 + 6e4) sin(z - f )  + (16 + 18e - 32e2 + 18e3 + 16e4) sin(z)+ 

(12 + 39e2 - 6e4) sin(z + f )  - (28 + 7e2 + 10e4) sin(z + 3f)- 
1 

(18e + 18e3) sin(z + 4f) - (3e2 + 6e4) sin((z + S f )  1 + 
J 

e3 cos(z - f )  + (12e + 3e3) cos(z + f )  + (8 + 12e2) cos(z + 2f)+ 
8(e2 - 1)3 

3 
4(e2 - l ) 3  

-(4 + 12e + 9e2 + 4e3)M + 3e2H cos(z). 1 
The mean  anomaly is given  by 

Next, we describe how the theory  presented in this section should  be  applied to 

compute the hyperbolic  orbital elements of the spacecraft at any  time  during the flyby. 

We assume that  both  the  unperturbed  and  perturbed hyperbolic orbital elements 

are known at some initial  time t i .  If the initial  time is sufficiently earlier or later  than 

the time of closest approach  it might be possible to neglect the  perturbations  at  the 
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initial  time.  The  perturbed  hyperbolic  orbital elements at any time t are  computed as 

follows. 

1. Propagate  the  unperturbed  orbit from time t i  to time t .  This is accomplished by 

keeping the first five hyperbolic  orbital elements the same as at time ti and applying 

equation (3)  to compute the mean anomaly. Also,  infer the values of the hyperbolic 

true  and eccentric anomalies. 

Apply equations  (17)  and (26) to compute the functions of the inclinations. Apply 

equations (19), (21), (23), (27), and (29) to compute the functions of eccentricities. 

Note that if this  calculation is going to be made more than once, both  the inclination 

functions and  the factors  independent of the  mean, true, or eccentric  anomalies 

involved in the equations giving the eccentricities  functions  can  be  computed once, 

using the  initial hyperbolic  orbital  elements. 

3. Apply equations  (18), (20), (22), (24),  (25),  and  (28)  to  compute  the  variations of 

the hyperbolic  orbital  elements. 

4. Determine the constants of integration from the  perturbed  orbital  elements  at  the 

initial  time. 

5. COMPARISONS WITH OTHER THEORY AND NUMERICAL  INTE- 

GRATIONS 

We compared the results of section 4  with  the  results  predicted by the AG's theory 

and  with the results of numerical  integrations. 

The  tests  presented in this section use a typical Titan flyby of Cassini's  trajectory. 

For Titan, p X 8978.173.km3s-2, and R X 2575 km; we took  values of C20 and C22 

equal to 4.9 x and 1.5 x low5, as estimated in Rappaport et al. (1997). 

For the flyby considered and  at  the time of closest approach,  the  distance  from 

Titan's center is X 4074.9  km and  the speed with respect to  Titan is X 5.9 km/s;  the 

eccentricity of the hyperbolic  orbit is X 14.9, the inclination is X 67.5", the longitude of 

the node is X 202.9", the argument of pericenter is X 135.7", and  the mean  anomaly is 

equal to zero. We assumed that  the above coordinates  correspond to  the  unperturbed 

orbit. For the  initial  time, we selected two hours before  closest approach. 
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We determined the  trajectory analytically with a point every minute implementing 

the theory presented in  this  paper as described at  the end of section 4. 

We also used the AG’s theory, as well as a variant of this  method, which incorporates 

an improvement and corrections described below. 

We performed numerical integrations by the Burlish and Stoer method,  starting  at 

the initial  time  and  taking as initial conditions the  perturbed  state  at  that time. 

Figures 1 and 2 show the variations in hyperbolic elements as a function of time 

for four hours centered on  closest approach. For any hyperbolic element E among 

the first five ones, we plotted AE E E p ( t )  - Ep(ti) ,  where the subscript p stands for 

“perturbed.” As far as the mean anomaly is concerned, we defined A M  E M p ( t )  - 
Mp(t2) - n[ap( t i ) ] ( t  - t i ) .  

In each figure, the solid  line corresponds to  the numerical integration, the open 

circles  were computed from the new theory of this  paper,  and  the crosses correspond to 

the AG’s theory. For clarity, only  one  symbol  per  five points is plotted. The  units are 

kilometers and degrees. 

5.1. Effects of the Mass 

The first comparison concerns the case  where the spacecraft is perturbed only by 

the satellite mass. The results are shown in Figure 1. These figures show a significant 

disagreement between the AG and  the new theory (or the numerical integration) for all 

elements except the inclination and longitude of the node. 

This disagreement can be eliminated by replacing AG’s solution for the  perturba- 

tions due to  the mass by the exact solution. The modified equations for the monopole 

effect, in function of the six elements p ,  q ,  w ,  b, u ,  and 7 used by AG, are 
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* [ J  
sin f 

w E wo = arcsln 
1 + e2 + 2ecos f 

a(e2 - 1) 
J 1 +  e2 +2ecosf7  

b = -  

ae(e2 - 1) sin f 
(1 + e cos f > J 1 +  e2 + 2e cos f 7  

q = -  

where vo E up is the velocity at closest approach. So, in order to improve the Anderson- 

Giampieri  theory for the mass perturbations, we recommend replacing  equations (47) 
to (51) of their  original  paper by equations (31) above. Except for this change and  an 

additional change described in section 5.2, the practical  implementation of their  theory 

remains the same. 

5.2. Effects of C 2 0  and (722 

We studied  the effects of C 2 0  and C22 separately, but for the purpose of briefness, 
we present  here the combined perturbations  due  to  these two gravity  harmonic coef- 

ficients. The results of the comparison are shown in Figure 2. For this  comparison, 

we used the improved and corrected (see below) AG’s theory. We observe an excellent 

agreement between the numerical  integration  and the theory  presented in this  paper. 

We observe also a good agreement between the  latter (or the numerical  integration)  and 

the improved and corrected AG’s theory. 

Figure 3 shows the magnitude of the  perturbations in velocity and  in line-of-sight 

velocity for the same flyby. Again, we find a  remarkable agreement between the new 
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theory and  the numerical integration, while the AG’s theory is a good approximation 

of both. 

This good agreement was obtained by correcting a number of errors in section 6.2 
“Quadrupole Sectorial Harmonics” of the AG’s paper.  Their  equation (66) must  be 

replaced by 

. I  3pR2C22 r = -  [x(5x2 - 5y2 - 2r2),  y(5x2 - 5y2 + 2r2), 5 z ( ( z 2  - y2)] . 
r7 (32) 

Consequently, the variations due to  the quadrupole sectorial harmonics in  their 

paper  must  be replaced  by: 
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6. EFFECT OF THE ROTATION ON THE  PERTURBATIONS DUE TO 
THE QUADRUPOLE MOMENTS 

In this  section we come  back to  the  assumption  made in section 4.2 that  the  rota- 

tion of the body  during the  duration of the flyby  could be neglected in  computing the 

perturbations due to  the body’s quadrupole  moments. First, we discuss the applica- 

bility of this  assumption,  and  then we derive a third modification of the AG’s theory, 

which gets  rid of this  assumption. 

6.1. Applicability of the  Assumption  that  the  Body’s  Rotation can be  Ne- 
glected 

As a rule of thumb,  the  orbital  perturbations  are applied over an interval of time 

N 5b/v, which is at most of order one hour for Cassini targeted flybys. The  duration 

of gravity  experiments is between 2 and 4 times  this  duration. By comparison, the 

rotation  periods of most Saturnian  satellites  are  equal to their orbital period, which is 

of order one day or greater for the nine  major  satellites.  Exceptions  are  Phoebe, which 

has a period of 9.282 hours (Davies et  al. 1996), and Hyperion, whose rotation is chaotic 

(Wisdom  et  al. 1984). 

Hence, in  practice, the assumption  made in our work  is the least  justified for the 

targeted flyby of Phoebe  and for the targeted flybys of Enceladus (there is no  targeted 

flyby of Mimas by Cassini and we are not planning to measure the gravity  harmonic 

coefficients of Hyperion). We compared the variations of the hyperbolic  elements for 

several flybys, in the two  cases  where we neglect and do not neglect the satellite’s 
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rotation. These tests were  based  on numerical integrations. The results agree very  well, 

except for the mean anomaly. This is illustrated in the case of the Phoebe flyby (worst 

case  for Cassini) by Figure 4. 

In section 5 of this article, we used a typical Titan flyby as an example. In this 

example, the assumption of neglecting the rotation rate of Titan over four hours, whereas 

Titan’s  rotation period is nearly 16 days, was  very  well justified. 

6.2. Effects of a  Rotating Body 

The  perturbations  due  to C20 are not affected by the body’s rotation. On  the other 

hand,  an 2722 term must be considered in addition to  the C 2 2  term, when taking the 

effect of the  rotation  into account. In  the  rotating frame, we have 

C22(t) = c;, cos(2w4, 

s22(t) = C& sin(2w,t), 
(39) 

where w,  is the  rotation  rate of the body. In the framework of the AG’s theory, and 

assuming that  the body rotates  around  its axis of maximum  inertia,  the variations due 

to  the time-varying sectorial coefficients are given  by: 
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with 
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+oo 
m+l (- 1 ) P  (2Wt)2P+l n m + 2 p + 2   m + 2 p + 4  

S(n,  m)  = X 
( 2 p  + l>!(m + 2p + 2) [2’ 2 1 2 

; -x21 , 
p=O 

where 

and  F[a,b,c;x] is a hypergeometric function (Abramowitz and Stegun 1970). Note that 

equations ( 3 3 )  to ( 3 8 )  can be obtained from equations (40)  to ( 4 5 )  as the zero-th order 

terms  in the expansion of powers of w,t. 

7. CONCLUSION 

In this  paper, we have  developed an analytical theory for the  perturbations of a 

spacecraft due  to the gravity coefficients C20 and C22. Comparisons with numerical 

integrations show that this theory is  very accurate. 

The hyperbolic theory described here can be applied in general for  flybys of both icy 

satellites and giant planets, unlike a previous theory based  on the Born approximation, 

which required that ,u/bv2 be small (see AG 1999). We compared the new theory with 

the one developed by Anderson and Giampieri. We found that we could  get a good 

agreement between the two theories for  icy satellites provided that we modify the AG’s 
theory to compute accurately the perturbations due to  the mass and  that a sign error 

in the  part of the potential function (Eq. 66 of the AG’s theory)  be corrected to 
read (32) .  
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APPENDIX A 

A.l .  Reference Frames 

A. l . l .  Body-Fixed Reference Frame at Closest Approach 

We consider the hyperbolic orbit of a spacecraft flying  by a punctual  satellite at 0. 
We denote by Ozyz the satellite body-fixed  reference frame at closest approach. 

A.1.2. Orbital  Frames 

At any  time,  the  orbital  frame is  such that  the Ox'-axis  is in  the direction of 

periapsis and  the  02'-axis is normal to  the  orbit. This  frame  can be obtained from the 

body-fixed frame at closest approach by three Euler rotations  with angle: 

1) R = longitude of the ascending node; 

2) I = inclination of the  orbit; 

3) w = argument of pericenter. 

The  matrix of passage from Ozyz to Ox'y'z' is 

M(R, I, w)  = 

f cos R cos w- sin R cos w + sin I sin w 
cos I sin R sin w cos I cos R sin w 

-cosRsinw- -sinRsinw+ sin Icosw . (49) 
cos I sin R cos w cos I cos R cos w 

, sin Is inR - sin I cos R cos I I 
A.1.3. Orbital  Frame at Closest Approach 

The  orbital frame at closest approach (t  = tela) is a particular case of orbital frame. 

Let us call Ad,/, the  matrix of passage from Ozyz to yL/azL/a. 
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We define the variables p, q, and w1 which orient the  orbital  frame OxclylzI at 

time t with respect to  the  orbital frame OxLlay~lazLla at closest approach  through 

tree  rotations  around  the xLla-, yLla- and zLla-axes. The  matrix of passage from 

OxLla yL,azLla to Ox 1 1 1  y z is: 

cos q cos w1 - cos q sin 201 sin q 

sinpsinqcoswl+  -sinpsinqsinwl+  -sinpcosq 
cos p sin w1 cos p cos 201 

cos p sin q cos w1+ cos p sin q sin w1+ cos p cos q 
sinp sin w1 sin p cos w1 

We must have 

n;r = M S a  X M .  

To first order  in  p, q and w1, we have 

A.2. Hyperbolic  Elements 

A.2.1. Classical Hyperbolic Elements 

From Eqs. 4-61, page  170, of Battin (1987), the position and velocity in the  orbital 

frame  are given  by 

r‘=a(cosh H - e)e^,, + f i s i n h  He;, , 

sinh He^, ,  + - m u = - -  cosh He; , ,  
r r 

(53) 

p = -a( e2 - 1); e^,, and e;, are  the unit vectors  along the Ox’- and  0y’-axes, respectively. 
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We call H the hyperbolic eccentric anomaly. It is related to  the  true anomaly f 
by: 

tan 1 2 f = d z - t a n h  - 2 1 H. 

We also have 

sin f = 
( e  cosh H - 1) ’ 

e - cosh H 
(e cosh H - 1)’ 

cos f = 

sin f d F 3  
(I  + ecos f )  ’ 

e+cos f 
(1 + ecos f ) ’  

sinh H = 

cosh H = 

(54) 

(55) 

Eq. 4-58, page 168, of Battin (1987) relates the hyperbolic eccentric and mean 

anomalies: 

M = esinhH - H. (56) 

Using Eq. (53)’ the radius is 

r = a( 1 - e cosh H), 

and  the velocity  is 

where 

is the velocity at infinity. Eq. (59)  defines the semi-major axis 

(57) 
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The  radius  and velocity at closest approach  are given  by 

rp = a(1  - e ) ,  

and 

By combining Eqs. (60)  and (61) we find the eccentricity 

A.2.2. Anderson-Giampieri Elements 

The variables appearing  in the matrices (50) and (52) are  related to  the variables 

of the AG's theory. More  specifically, p and q are  the same variables as in  this  theory 

and 

where wo is  given  by Eq. (31). 

The  three  other elements used by Anderson and Giampieri, b, ZI and 7 are such 

that is the velocity as in Eq. (58)  and b is the  impact  parameter. We have: 

r'. v' =- 7 
V 
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FIGURE CAPTIONS 

FIGURE 1: Behavior of the hyperbolic elements as a function of time  due  to 

the effect of the satellite’s mass alone, and computed by three  methods  (numerical 

integration,  the  analytical  theory presented in  this  paper, AG’s theory). Units are 

kilometers and degrees. 

FIGURE 2: Variations of the hyperbolic elements as a function of time  due  to  the 

harmonic gravity coefficients C 2 0  and C22, and computed by three  methods (numerical 

integration,  the  analytical theory presented in  this  paper, AG’s theory). Units are 

kilometers and degrees. 

FIGURE 3: Variations in the spacecraft speed and in the line-of-sight speed due 

to C ~ O  and C 2 2  and computed by three  methods  (numerical  integration, the analytical 

theory  presented  in  this  paper, AG’s theory). Unit  is  kilometer per second. 

FIGURE 4: Variations of the hyperbolic elements for the Cassini Phoebe flyby, 

computed in neglecting  (solid  line) and not neglecting  (circles) the  rotation of that 

body. Units are kilometers and degrees. 
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F I G U R E  1 
Titan flyby of 2006 Dec. 28 
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Solid  line = numerical integration,  circles = t h i s  paper theory, crosses = Anderson-Giampieri theory 
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FIGURE 2 
Titan flyby of 2006 Dec. 28 

c20 + c22 
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FIGURE 3 

Titan flyby of 2006 Dec. 28 
c20 + c22 

Solid lise = numerical  integration,  circles = t h i s  paper  theory,  crosses = Anderson-Giampieri theory 
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F I G U R E  4 
Phoebe flyby 
c20 + c22 

Solid  line = neglecting rotation,  circles = not neglecting it 
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